##plugins.themes.bootstrap3.article.main##

Type 2 diabetes occurs mainly as a result of two interrelated problems Cells in the muscles, fat, and liver become insulin resistant, because the cells do not react in a normal way to insulin, they do not absorb enough sugar, and thus the pancreas becomes unable to secrete an adequate amount of insulin to control blood sugar levels. Since antioxidants and trace elements have a role in the treatment of diabetes by defending beta cells against oxidative stress, so the current research was conducted to find out the levels of non-enzymatic antioxidants (Uric acid, Glutathione, Ceruloplasmin) and some trace elements (Iron, Copper, Zinc) that act as antioxidants in serum of type 2 diabetic patients compared to healthy subjects in Basrah Governorate-Iraq by age. The number of patients in the study was (50) patients (26 males-24 females) and healthy subjects (43), including (11 males-32 females). It was found that there was a significant decrease at the level of significance (p<0.001) in the levels of each of (Glutathione, Ceruloplasmin, Iron and Zinc) in patients and healthy subjects and this decrease increased with age, while there was a significant increase at the level of significance (p<0.001) in the levels of (Uric acid and Copper) at patients and healthy subjects with age.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Jassim, S., & Abed, R. Relationship between A coping style and self-care activities of patients with type 2 diabetes mellitus (t2dm) at endocrinology and diabetes center in al-Basra city: a cross-sectional study. Kufa Journal for Nursing Sciences. 2021; 11(1): 1–8. https://doi.org/10.36321/kjns.vi20211.452.
    DOI  |   Google Scholar
  2. Abdulkader. A. Al-Shakou, N. A. N. Serum level of periostin in patients with Type 2 Diabetes Mellitus in Bsrah, Iraq. Azerbaijan Medical Journal. 2022, 62(6): 1745–1751.
     Google Scholar
  3. Kadhim, S. N., Abdullah, A. S., & Sabah, A. I. Treatment modality, diabetic control, and blood homeostasis in type 2 diabetes mellitus patients in Basra. Current Issues in Pharmacy and Medical Sciences. 2021; 34(2): 70–73. https://doi.org/10.2478/cipms-2021-0012.
    DOI  |   Google Scholar
  4. Wei, W., Liu, Q., Tan, Y., Liu, L., Li, X., & Cai, L. Oxidative Stress, Diabetes, and Diabetic Complications. Hemoglobin. 2009; 33(5): 370–377. https://doi.org/10.3109/03630260903212175.
    DOI  |   Google Scholar
  5. Rajendiran, D., Packirisamy, S., & Gunasekaran, K. A review on role of antioxidants in diabetes. Asian Journal of Pharmaceutical and Clinical Research. 2018; 11(2): 48. https://doi.org/10.22159/ajpcr. 2018.v11i2.23241.
     Google Scholar
  6. Alvarez-Lario, B., & Macarron-Vicente, J. Uric acid and evolution. Rheumatology. 2010; 49(11): 2010–2015. https://doi.org/10.1093/rheumatology/keq204.
    DOI  |   Google Scholar
  7. Sun, H., Wu, Y., Bian, H., Yang, H., Wang, H., Meng, X., & Jin, J. Function of uric acid transporters and their inhibitors in hyperuricemia. Frontiers in Pharmacology. 2021; 12(1): 667753. https://doi.org/10.3389/fphar.2021.667753.
    DOI  |   Google Scholar
  8. Maiuolo, J., Oppedisano, F., Gratteri, S., Muscoli, C., & Mollace, V. Regulation of uric acid metabolism and excretion. International Journal of Cardiology. 2016; 213(2016): 8–14. https://doi.org/10.1016/j.ijcard.2015.08.109.
     Google Scholar
  9. Hassan, E. A., Al-Zuhairi, W. Sh., & Ibrahim, W. A. Antioxidants, and their role in preventing diseases: a review. Earthline Journal of Mathematical Sciences. 2022; 7(2): 165–182. https://doi.org/10.34198/ejcs.7222.165182.
    DOI  |   Google Scholar
  10. Altuhafi, A., Altun, M., & Hadwan, M. H. The correlation between selenium dependent glutathione peroxidase activity and oxidant/antioxidant balance in sera of diabetic patients with nephropathy. Reports on Biochemistry and Molecular Biology. 2021; 10(2): 164–172. https://doi.org/10.52547/rbmb.10.2.164.
    DOI  |   Google Scholar
  11. Pastore, A., Federici, G., Bertini, E., & Piemonte, F. Analysis of glutathione: implication in redox and detoxification. Clinica Chimica Acta. 2003; 333(1): 19–39. https://doi.org/10.1016/s0009-8981(03)00200-6.
    DOI  |   Google Scholar
  12. Pizzorno, J. Glutathione! Integrative Medicine (Encinitas, Calif.). 2014; 13(1): 8–12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684116/.
     Google Scholar
  13. Hellman, N. E., & Gitlin, J. D. Ceruloplasmin metabolism and function. Annual Review of Nutrition; 2002; 22(1), 439–458. https://doi.org/10.1146/annurev.nutr.22.012502.114457.
    DOI  |   Google Scholar
  14. Noah, K. Y. Estimation, and isolation of ceruloplasmin and some biochemical indicators in diabetes mellitus type II patients compared to healthy controls in Kirkuk Province, Iraq (F. K. Hmood & I. G. Zainal, Eds.). Medical Journal of Babylon. (2020, January 30); 17(1): 49–53.
     Google Scholar
  15. Zhao, X., Shao, Z., Zhang, Y., Liu, F., Liu, Z., & Liu, Z. Ceruloplasmin in Parkinson’s disease and the nonmotor symptoms. Brain and Behavior. 2018; 8(6): e00995. https://doi.org/10.1002/brb3.995.
    DOI  |   Google Scholar
  16. Fraga, C. G. Relevance, essentiality, and toxicity of trace elements in human health. Molecular Aspects of Medicine. 2005; 26(4–5): 235–244. https://doi.org/10.1016/j.mam.2005.07.013.
    DOI  |   Google Scholar
  17. Attar, T. A mini review on the importance and role of trace elements in the human organism. Chemical Review and Letters. 2020; 3(3): 117–130. 2020. https://doi.org/10.22034/crl.2020.229025.1058.
     Google Scholar
  18. Al-Fartusie, F., & Mohssan, S. Essential trace elements and their vital roles in the human body. Indian Journal of Advances in Chemical Science. 2017; 5(2): 127–136. https://doi.org/10.22607/IJACS.2017.503003.
     Google Scholar
  19. Asif, M. Role of heavy metals in human health and particularly in respect to diabetic patients. TANG [HUMANITAS MEDICINE]. 2017; 7(1): 1.1–1.10. https://doi.org/10.5667/tang.2014.0033.
    DOI  |   Google Scholar
  20. Siddiqui, K., Bawazeer, N., & Scaria Joy, S. Variation in macro and trace elements in progression of type 2 diabetes. The Scientific World Journal. 2014; 2014:1–9. https://doi.org/10.1155/2014/461591.
    DOI  |   Google Scholar
  21. Sedlak, J., & Lindsay, R. H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry. 1968; 25(1): 192–205. https://doi.org/10.1016/0003-2697(68)90092-4.
    DOI  |   Google Scholar
  22. Forman, H. J., Zhang, H., & Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Molecular Aspects of Medicine. 2009; 30(1–2): 1–12. https://doi.org/10.1016/j.mam.2008.08.006.
    DOI  |   Google Scholar
  23. Menden, E. E., Boiano, J. M., Murthy, L., & Petering, H. G. Modification of a p-phenylenediamine oxidase method to permit non-automated ceruloplasmin determinations in batches of rat serum or plasma microsamples. Analytical Letters. 1977; 10(3), 197–204. https://doi.org/10.1080/00032717708059204.
    DOI  |   Google Scholar
  24. Mosoni, L., Breuillé, D., Buffière, C., Obled, C., & Mirand, P. P. Age-related changes in glutathione availability and skeletal muscle carbonyl content in healthy rats. Experimental Gerontology. 2004; 39(2): 203–210. https://doi.org/10.1016/j.exger.2003.10.014.
    DOI  |   Google Scholar
  25. Semsei, I., Jeney, F., & Fülöp, T. Effect of age on the activity of ceruloplasmin of human blood. Archives of Gerontology and Geriatrics. 1993; 17(2): 123–130. https://doi.org/10.1016/0167-4943(93)90044-i.
    DOI  |   Google Scholar
  26. Čaušević, A., Semiz, S., Macić-Džanković, A., Cico, B., Dujić, T., Malenica, M., & Bego, T. Relevance of uric acid in progression of type 2 diabetes mellitus. Bosnian Journal of Basic Medical Sciences. 2010; 10(1): 54–59. https://doi.org/10.17305/bjbms.2010.2736.
    DOI  |   Google Scholar
  27. Forte, G., Bocca, B., Peruzzu, A., Tolu, F., Asara, Y., Farace, C., Oggiano, R., & Madeddu, R. (2013). Blood metals are concentrated in type 1 and type 2 diabetics. Biological Trace Element Research, 156(1-3), 79–90. https://doi.org/10.1007/s12011-013-9858-6
    DOI  |   Google Scholar
  28. Okoduwa, S. I., Umar, I. A., Ibrahim, S., Bello, F., & Habila, N. Age-dependent alteration of antioxidant defense system in hypertensive and type-2 diabetes patients. Journal of Diabetes & Metabolic Disorders. 2015; 14(1): 1–9. https://doi.org/10.1186/s40200-015-0164-z.
    DOI  |   Google Scholar