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I. INTRODUCTION 

Micro and nanoscale devices have contributed 

tremendously to the fields of engineering, biomedical 

sciences, applied/natural sciences, health care, 

instrumentation and many more [1]. The significance of 

microelectromechanical systems (MEMS) origins due to the 

change in properties of atomic and molecular systems that to 

the classical understanding at such small length scales, and 

have contributed tremendously to modern research 

community and industry in many positive aspects [2]–[5]. 

The change in properties has resulted in enhanced resolution 

power and sensitivity of a microdevice to a device working at 

macro-scales [6].  

While moving from macro to micro/nano scales, 

characteristic dimensions of a general system become 

comparable to the mean free paths of atoms and molecules, 

ultimately deviating from the description of the system from 

a classical perspective [6]. The behavior of systems at these 

scales demonstrated many enhanced functional properties 

[6], [7] such as thermal conductivity, optical properties, 

electrical conductivity and many more [7]. Such enhanced 

behavior has been used in many industrial, health care and 

technological applications to facilitate, enhanced heat transfer 

[8], [9], cancer cell detection [1], [2], advanced 

characterization [10], non-Newtonian fluid flow [11] and 

functional materials development [12], [13], etc.  

Micro and nanodevices can be introduced as a marvel in 

engineering that utilizes small length scale behavior to fulfil 

many needs of the society [3]. MEMS devices can be entirely 

based on solid state, solid-liquid state as well as solid-gas 

conditions [2], [14], [15]. Depending on the application, in 

solid-liquid and solid-gas MEMS devices, fluid flow, heat 

transfer and mass transfer can take a significant role in the 

required process [1], [1], [3]. Therefore, to develop, model 

and prototype such devices, a broad understanding of fluid 

flow and mass transfer phenomena is needed. Through this 

work, we have given an attempt to present modeling 

processes of mass transfer phenomena in micro/nanodevices 

from analytical and computational approaches.  

To extract few past work done based on mass transfer in 

micro devices, Gajasinghe et al. [2], [4] performed research 

on microfluidic bio sensors on detection of cancer cells in 

human blood cultures. They made a microchannel to achieve 

micro confinement of human cancer cell cultures and used 

electrical impedance spectroscopy to label the cells based on 

the change of impedance of the microchannel. Psaltis et al. 

[16] discussed the optical advantages of microfluidics in their 

review. As they have presented, microfluidics facilitated a 

branch referred to as optofluidics that can contribute to 

microscopic optical characterization. Terrey et al. [17] 

introduced microfluidic flow control by introducing control 

of colloidal particles in the fluid. Smart manipulation of 

colloidal particles benefitted smart microfluidic valves and 

micrometer-scale fluid pumps. Yildirim et al. [14] developed 

surface acoustic wave viscosity and density sensor integrating 

with microfluidics. Similar to the work done by Gajasinghe 

et al. [2], [4], they used electrical impedance spectroscopy to 
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perform desired measurements. Finally, Paprotny et al. [10] 

developed a microfluidic sensor to monitor the airborne 

particulate matter. They have used the principle of acoustic 

resonation to evaluate particulate matter concentration based 

on a change in resonant frequency. All such works 

demonstrate the advantages of microfluidics to industry and 

society due to the expanded reach for collecting information 

using such small length scales.  

 

 
Fig. 1. Immobilization free microfluidic biosensor developed by Gajasinghe 

et al. [2]. 

 

For a researcher who is motivated in developing smart 

microfluidic device, modeling is a crucial need before 

moving to prototyping. In general, we can characterize main 

areas of interest in microfluidics as mechanical, fluid flow, 

thermal, electrical, and mass transport. Mass transfer in 

microfluidics has tremendously contributed to many 

biological applications [2] and also mechanical, thermal, heat 

transfer aspects as discussed in the previous paragraph. To 

adhere to the scope of this review, herewith we introduced an 

overview of modeling methods in microfluidic mass transport 

starting from governing equations for microflows.  

We have presented analytical and numerical approaches 

that have gained popularity in microfluidic research 

community and are accepted as standards in understanding 

micro/nano flows. All solutions as similar to the classical 

approaches, based on solving fundamental governing 

equations pertaining to a specific transport phenomenon. We 

will notice that after manipulating through the small length 

and time scales, will still recover classical definitions of 

transport phenomena. Therefore, to develop a bridge between 

continuum (classical) and non-continuum (micro/nano) 

description, we initially present classical governing equations 

and solutions to mass transport problems. And the relation 

between classical and non-continuum laws is subsequently 

discussed in this article. 

II. CONTINUUM MODELING APPROACHES FOR MASS 

TRANSPORT 

A. Analytical Approaches 

In continuum-based solutions for mass transport, we pre- 

assume that molecular mean free paths of the species are 

many orders of magnitude smaller compared to the flow 

domain. In addition to this assumption, we also consider 

carrier fluid medium, or the bulk medium has a mean free 

path that is much smaller than the species [18]. Due to this 

assumption, we can define the transport properties of the 

system in a bulk approach which can be considered 

independent of the effect of the spatial domain. 

B. Brownian Motion 

Brownian motion can be considered the simplest mass 

transport process. The species in a bulk medium diffuse in 

space due to intermolecular collisions (atomic/molecular 

vibrations) and can be mainly attributed to concentration 

gradient-driven transport. We can mainly describe continuum 

Brownian motion from Fick’s first diffusion law by defining 

bulk diffusion coefficient (𝐷) and local concentration (𝑐) of 

the species [19], [20]. Therefore, mass flux of the species (𝐽), 
by Fick’s first law for fully concentration gradient driven 

transport can be given as [19]: 

 

𝐽 = −𝐷 ∇. 𝑐 (1) 

 

where ∇ can be subsequently written as, 
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
+

𝜕

𝜕𝑧
 to 

represent three dimensions in the cartesian coordinate system. 

The definition for diffusion coefficient can be different based 

on the criteria of the system, however, for a most general case 

for the diffusion of spherical particles with an average 

diameter 𝑑𝑝, we can write an expression for 𝑑𝑝 using Stokes-

Einstein relationship as:  

 

𝐷 =
𝑘𝐵 . 𝑇

6𝜋𝜂𝑑𝑝
 

(2) 

 

where 𝑘𝐵 is the Boltzmann constant (𝑘𝐵 = 1.38 × 10−23𝐽/
𝐾) and 𝑇 is the absolute temperature. And 𝜂 is the bulk fluid 

viscosity. In most cases, Fick’s first law becomes a qualitative 

comparison tool for mass transport. However, Fick’s second 

law provides temporal evolution characteristics of transport 

and many analytical solutions become possible to resolve the 

process. Therefore, Fick’s second law can be given as: 

 
𝜕𝑐

𝜕𝑡
= 𝐷 ∇2. 𝑐 + 𝜔0 

(3) 

 

where 𝑡 is the time in real space and ∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 and 

𝜔0 is mass source or sink term in the system. Analytical 

approaches can be presented for (3) for many flow 

arrangements based on the feasibility of developing an 

analytical solution [21]. 

C. Advection with Fick’s Diffusion  

So far, Brownian motion considered diffusion of species in 

a stationary medium. For transport in a moving medium, 

Fick’s second law can be modified by accounting advection 

effects. Therefore, Fick’s second law with advection effects 

can be given as [18]: 

 
𝜕𝑐

𝜕𝑡
= 𝑢 ∇. 𝑐 + 𝐷 ∇2. 𝑐 + 𝑆 

(4) 
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where 𝑢 is the velocity profile of the carrier medium and can 

be written for three dimensions, 𝑢 = 𝑖. 𝑢𝑥 + 𝑗. 𝑢𝑦 + 𝑘. 𝑢𝑧, 

with i, j and k are unit vectors in x,y and z coordinates. And 

𝑆 is the source or sink term.  

The initial step for seeking a solution to any advection-

diffusion problem is to resolve the velocity profile in the 

transport domain. Herewith we assume that species 

concentration is dilute enough therefore, it will not influence 

bulk fluid flow. The most general approach is to obtain 

velocity distribution by solving momentum equations to 

obtain velocity distribution and subsequently solving 

advection-diffusion equation in case of a steady flow 

problem. For a transient problem, a coupled analytical 

solution is needed to study the process [22]. 

D. Darcy’s Model  

Significance in Fick’s diffusion is that mass transport is 

only controlled by either advection or concentration gradient. 

However, mass transport influenced by a pressure gradient is 

not addressed. In Darcy’s model, mass transport velocity is 

successfully described using a pressure gradient and gained 

wide popularity in applying to porous media flow [20]. 

 

𝑑𝑝

𝑑𝑥
=

𝜇𝑣

𝑃𝑚𝑣

 +
𝜌𝑣2

𝑃𝑚𝐼

 
(5) 

 

where, 𝑑𝑝/𝑑𝑥 is the pressure gradient and 𝑃𝑚𝑣 and 𝑃𝑚𝐼  are 

viscous and inertial permeabilities of the species respectively. 

These values can be found empirically for porous media. 

Finally, it is important to note that Darcy’s model considers 

the diffusion medium as homogeneous, and velocity (v) 

provides the diffusion velocity of the species itself.  

E. Numerical Approaches 

Analytical solutions for transport problems are mostly 

possible when the geometry is not complex and can be 

successfully defined with a minimum number of variables 

that can facilitate an analytical solution. However, when the 

geometry is complex enough and the problem expands to 

multi-dimensions with complex boundary conditions, 

analytical solutions become infeasible. Therefore, as an 

alternative, computational modeling is necessary with valid 

approximations within an acceptable tolerance [23]. 

Computational fluid dynamics (CFD) as a modeling tool 

highly facilitated resolving transport problems in these 

aspects [24].  

F. Species Transport  

Objective of CFD approaches in species transport is to 

solve governing equations from a numerical approach. The 

most common methodology is to utilize finite volume (FVM) 

or finite difference method (FDM) depending on the 

complexity of the geometry. We can discretize the advection-

diffusion equation ((4) using one dimensional explicit FDM 

only for x direction as [18]: 

  
𝑐𝑖,𝑗
𝑛+1−𝑐𝑖,𝑗

𝑛

∆𝑡
= 𝑢𝑖(

𝑐𝑖+1,𝑗
𝑛 −𝑐𝑖−1,𝑗

𝑛

∆𝑥
) + 𝐷(

𝑐𝑖,𝑗
𝑛 −2𝑐𝑖,𝑗

𝑛 +𝑐𝑖−1,𝑗
𝑛

∆𝑥2
) + ∅  

(6) 

 

 

where 𝑐𝑖,𝑗
𝑛+1 and 𝑐𝑖,𝑗

𝑛  are concentration of the species at n+1 

and nth time step. ∆𝑡 is the time step size for each iteration and 

∆𝑥 is the grid spacing in x-dimension. For any source or sink 

of mass in the transport domain ∅ can be added as an 

additional variable. Similar to analytical solutions, equation 

(6) has to be solved coupled with momentum equations to 

obtain flow field information [18].  

G. Multiphase Modeling Methods  

Mass transport can also be modeled using pure 

computational techniques such as multiphase models. Most 

common multiphase models are discrete phase (DPM) and 

volume of fluid (VOF) modeling. In DPM, mass transport is 

modeled as individual particles that are not influencing the 

flow paths of bulk flow. Therefore, DPM is acceptable to 

dilute flows [25]. The general transport equation of DPM can 

be given as [26]: 

 
𝜕𝐶𝑠
𝜕𝑡

+ 𝑢 ∇. 𝐶𝑠  = 𝐷 ∇2. 𝐶𝑠 − 𝑢1. ∇𝐶𝑠  −  𝑢𝑟 . ∇𝐶𝑠 
(7) 

 

where 𝐶𝑠 is the discrete particle concentration, 𝑢 is the local 

bulk fluid velocity, 𝑢1 is the local lift velocity based local and 

average shear stresses. And 𝑢𝑟 is local drift velocity which is 

impacted by fluid drag and buoyant forces.  

Secondly, VOF model defines two phases in discrete way 

using an order parameter. Order parameter is usually a 

fraction between 0 and 1 (Referred as void fraction) which 

identifies the volume occupied by each phase in a discrete 

simulation volume [27]. Therefore, VOF solves two coupled 

conservation equations simultaneously for species transport 

and order parameter [28], [29]. The conservation equation to 

void fraction can be given as [29]: 

 

𝜌(𝜑) (
𝜕𝑢

𝜕𝑡
+ 𝑢. ∇𝑢) = −∇𝑝 + 𝜌(𝜑). 𝑔 +

∇. [𝜇(𝜑)( ∇𝑢)]  

(8) 

 

where, 𝜑 is the void fraction and 𝜌(𝜑) is the density 

associated with the order parameter. And 𝜇(𝜑) is the dynamic 

viscosity of the respective phase. Continuum Porous Media 

Modeling  

Porous media becomes an important application when 

considering micro-nano scale transport. Application of 

porous media has benefited in many aspects in heat and mass 

transfer [18], [30]. Therefore, continuum scale porous media 

modeling is highly benefited modern research community. 

By considering a continuum overall diffusion coefficient 

species transport equations can be solved for porous media 

using methods introduced before. However, solving the 

velocity profile can be highly challenging in such domains. 

As a solution for this issue, a momentum sink term can be 

introduced to Navier-Stokes (momentum) equations to 

represent a virtual type of porous media to obtain the velocity 

profile as below [20].  

 
𝜕(𝜌𝑣)

𝜕𝑡
+ ∇. (ρv. v) = − ∇. p + ∇. 𝜏 −  𝐹 

(9) 

 

where 𝐹 is the momentum sink term and 𝜏 is the viscous shear 

stress tensor. 𝐹 can be modeled as [31]: 

 

𝐹 = −
𝜇

𝛼
. 𝑣 +

1

2
. 𝐶2𝜌𝑣. 𝑣 

(10) 
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where, 𝛼 is the bulk permeability of the porous media and 𝐶2 

is a model constant. 

In conclusion, most continuum approaches are 

satisfactorily valid for limited cases in microfluidic devices 

where associated transport is sufficiently dense therefore, 

rarefication effects can be neglected. However, using 

continuum methods is completely not valid for nanofluidics.  

III. NON-CONTINUUM MODELING APPROACHES 

So far, we have considered continuum methods for 

simulating mass transport with assumptions based on small 

molecular mean free paths compared to dimensions of the 

flow domain. Because of this assumption, we were able to 

define the holistic flow and diffusion properties to arrive at a 

transport solution.  

However, when characteristic dimensions of the domain at 

the order of the magnitude of the molecular mean free path, 

scattering of molecules with domain boundaries becomes 

significantly important similar (or greater) to intermolecular 

collisions. In classical laws, it is considered that scattering 

with domain boundaries is insignificant compared to 

intermolecular scattering. Due to this phenomenon, we 

observe a deviation of diffusion properties that to continuum 

assumptions in such length scales [6].  

In addition to boundary scattering, due to rarefication, 

surface forces from the boundaries become a dominant 

driving force in fluid flow and mass transport. Secondly, 

because of the dominance of surface effects, no slip boundary 

condition arises at the surface invalidating zero flow 

velocities at the fluid-solid interface. Thirdly, non-Newtonian 

effects take place in fluid flow showing non-linear behavior 

in fluid shear stress at such length scales [6]. The objective of 

this section is to provide solution approaches for mass 

transport under rarefication effects and varying diffusion 

properties at micro-nano length scales.  

A. Analytical Methods 

Similar to continuum methods, analytical solutions are 

possible for specific flow cases in micro-nano scales where 

simple geometries are involved. Herewith we present the 

most common analytical solutions for microscale mass 

transport processes.  

B. Capillary Transport  

Capillary transport refers to the transport of fluids in 

channels without and external driving force. The transport 

occurs due to surface forces on liquid molecules and this 

effect becomes dominant in microdevices with characteristics 

length scales of the order of 10−6 m [32]. Though we have 

stated that capillary effects are due to surface forces, 

however, capillary effects can be boosted by controlling the 

surface forces using methods from thermal, chemical, electric 

fields, optics and hydrodynamic itself [6]. These effects can 

be used to further scale down the microdevices up to 

nanoscale by helping to develop more sophisticated devices 

[6].  

The initial solution for capillary flow in microchannels 

starts with reduced order model to obtain velocity distribution 

in microchannels [6]. In the reduced-order model, capillary 

flow is attributed to a lumped system analysis. Therefore, the 

flow fields inside the microchannel are not explicitly solved 

rather than providing average values for velocity based on 

capillary dimensions.  

Reduced order model stems from the momentum equations 

as discussed before. The most final form of reduced-order 

model with an added mass for a rectangular microchannel 

with width 𝑤 and length 𝑙 and height ℎ0, can be given as [6]: 

  
𝑑

𝑑𝑡
{(𝑀𝑎 + 𝜌ℎ0𝑙𝑤)𝑢𝑡} = 2𝜎𝑙𝑔ℎ𝑤[

𝑐𝑜𝑠𝜃

ℎ0
+

1

𝑤
] +

𝐹𝑚 − 𝐹𝐷  

(11) 

 

where 𝑀𝑎 is the added mass, 𝜃 is the dynamic contact angle, 

𝐹𝐷 is the drag force and 𝐹𝑚 is any force that acts on the system 

apart from the drag force. The added mass is a virtual mass 

that has been introduced to remove inconsistency of the 

solution. Therefore, with 𝑟ℎ =
2𝑤ℎ0

2(𝑤+ℎ0)
, we can write an 

expression for 𝑀𝑎 as [6]: 

 

𝑀𝑎 =
𝜌𝜋𝑟ℎ

2𝑤

8
,  

(12) 

 

To arrive at the complete solution of (11), definition of 

drag force 𝐹𝐷 is necessary. 𝐹𝐷 can be modeled for different 

flow systems as presented elsewhere [6].  

We can solve for mass transport by reducing order velocity 

using (4). Using (4) does not account impact of rarefication 

on mass transport and results can be somewhat non-assuring. 

Therefore, to overcome such inaccuracies, the most valid 

approach is to utilize VOF full scale numerical model to 

resolve mass transport as presented in non-continuum 

computational methods section.  

C. Electrokinetic Transport  

Electrokinetic transport occurs in small length scales due 

to an applied electric field on the transport medium. Fluid 

flow is initiated due to the phenomenon called electric double 

layer formation (EDL) [6]. Capillary front can be stimulated 

by the effects of EDL to produce fluid flow [6].  

Herewith we present a most common mass transport model 

under electrokinetic flow as presented by Chakraborty et al. 

[6] on the transport of macromolecules in the order of size of 

the flow domain in narrow confinements. Macromolecular 

transport analysis has been highly contributed to the 

separation of analytes in many microscale characterization 

processes [32]. 

For an analyte introduced for a microchannel with a mean 

velocity 𝑢̅, we can write the species conservation equation for 

the concentration of the analyte (𝑐) [6] as: 

 
𝜕𝑐

𝜕𝑡
+ 

𝜕

𝜕𝑥
((𝑢𝑝 − 𝑢̅)c) +

𝜕

𝜕𝑦
(𝑣𝑝c) =

𝜕

𝜕𝑥
(𝐷𝑥

𝜕𝑐

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐷𝑦

𝜕𝑐

𝜕𝑦
) +

𝜕

𝜕𝑥
(𝜇𝑒𝑝𝑐

𝜕Ѱ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇𝑒𝑝𝑐

𝜕Ѱ

𝜕𝑦
)  

(13) 

 

where 𝑢𝑝 and 𝑣𝑝 are axial and transverse non-electrophoretic 

velocities respectively. And 𝐷𝑥 and 𝐷𝑦  axial and transverse 

diffusivities respectively. The parameter 𝜇𝑒𝑝 is called 

electrophoretic mobility which is a parameter that takes into 

factors that are beyond concentration gradients (free energy 

potentials etc. [6]). And Ѱ is the external electrostatic 

potential.  
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For fully developed flow in rectangular microchannel with 

appropriate boundary conditions, we can obtain axial and 

transverse diffusivities as [6],  

 

𝐷𝑥 = 𝐷
∫

1
𝛽1
𝑒𝑥𝑝(−

𝜔𝑤(𝑦𝑐𝑝)
𝑘𝐵𝑇

)
1

𝐴𝑐
𝑑𝐴

∫ 𝑒𝑥𝑝(−
𝜔𝑤(𝑦𝑐𝑝)
𝑘𝐵𝑇

)
1

𝐴𝑐
𝑑𝐴

 

(14) 

 

𝐷𝑦 = 𝐷
∫

1
𝛽2

𝑒𝑥𝑝(−
𝜔𝑤(𝑦𝑐𝑝)
𝑘𝐵𝑇

)
1

𝐴𝑐
𝑑𝐴

∫ 𝑒𝑥𝑝(−
𝜔𝑤(𝑦𝑐𝑝)
𝑘𝐵𝑇

)
1

𝐴𝑐
𝑑𝐴

 

(15) 

 

where D is the classical diffusion coefficient of the analyte 

based on particle diameter 𝑅𝑝, and can be obtained using: 

 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑅𝑝
 

(16) 

 

and 𝛽1 and 𝛽2 are drag enhancement factors of analytes in 

longitudinal and transverse directions and need to be 

evaluated separately based on imposed transport conditions 

[6].  

In addition to the previous approach, as a more holistic 

solution for analyte flow, have presented by Chakraborty et 

al. [6] consider the transformation of advection-diffusion 

species transport to an equivalent dispersion equation using 

perturbation analysis, considering a dispersion coefficient 

(𝐷∗) as [6]: 

 

𝜕〈𝐶〉

𝜕𝑡
+ 〈𝑢〉𝑈

𝜕〈𝐶〉

𝜕𝑥
= 𝐷𝑦𝐷

∗
𝜕2〈𝐶〉

𝜕𝑥2
 

(17) 

 

where 〈𝐶〉 is the average concentration by perturbation 

analysis and 𝑈 is the band velocity with 〈𝑢〉 as the average 

velocity in the channel. From this work, the time evolution of 

the concentration of analytes can be presented as [6]: 

 

〈𝐶〉 =
𝑛0

2𝑐0𝑤𝐻
.

1

√4𝜋𝐷𝑦𝐷
∗𝑡
𝑒𝑥𝑝[−

(𝐿 − 〈𝑢〉𝑈̅𝑡)2

4𝐷𝑦𝐷
∗𝑡

] 
(18) 

  

where 𝑛0 is the number of moles of analytes in the channel. 

𝑤 and 𝐻 are channel width and height respectively with 𝑐0 as 

the initial concentration of analytes introduced to the channel. 

Electrokinetic transport has been highly contributed to many 

biological microelectronic systems (BioMEMS) in 

evaluating invasion-free cancer cell detection, Immunology 

and many technological aspects [34].  

D. Colloidal Transport  

Another form of important micro and nanoscale transport 

process can be extracted as discrete particle transport or 

colloidal transport which contributed tremendously to 

BioMEMS applications [2]. Colloidal transport refers to the 

transport of micro and nanoscale particles or agglomerates in 

a bulk suspension. The recent motivations in such colloidal 

suspensions are due to the enhanced properties of the 

suspension than the base fluid [6]. The introduction of 

nanoparticles to a base fluid has resulted in increased 

functional properties such as thermal conductivity [7], [35]. 

Therefore, such composite fluids have aided to increase heat 

transfer efficiencies in many solid and liquid state heat 

transfers [37].  

The solutions to transport properties in composite 

suspensions are highly challenging with analytical methods 

due to a large number of particles and associated degrees of 

freedom. Almost all colloidal transport models are solved 

using numerical approaches. However, we introduce a few 

colloidal masses transport models in this section, and solution 

methods will be introduced in the upcoming section.  

A nanoparticle motion in a suspension can be initially 

described using Newton’s second law of motion [6],  
 

𝑚.
𝑑𝑣𝑝

𝑑𝑡
= 𝐹⃗ 

(19) 

 

where 𝑚 is the particle mass, 𝑣𝑝 is the particle velocity and 𝐹⃗ 

is the total force acting on the particle. The complete form of 

this equation can be given considering all force effects on 

nanoparticles based on Stokes drag, Basset History, virtual 

mass, acceleration of undisturbed fluid and body forces as 

respectively following the addition terms [6]: 
 

𝑚.
𝑑𝑣𝑝

𝑑𝑡
= 6𝜋𝜇𝑟𝑝(𝑣𝑙 − 𝑣𝑝) +

6𝜇𝑟𝑝
2√

𝜌𝜋

𝜇
∫

𝑑(𝑣𝑙−𝑣𝑝)

𝑑𝑡
.
𝑑𝜏

√𝑡−𝜏
+

2

3
𝜋𝜌𝑟𝑝

3(
𝐷𝑣𝑙

𝐷𝑡
−

𝑑𝑣𝑝

𝑑𝑡
) +

𝑡

0

4

3
𝜋𝜌𝑙𝑟𝑝

3 𝐷𝑣𝑙

𝐷𝑡
+

4

3
𝜋𝑟𝑝

3(𝜌𝑝 − 𝜌𝑙)𝑔  

(20) 

 

where 𝜏 is the relaxation time. 

By knowing this information, we can study the evolution 

of a particle using the relation [6]: 
 

𝑟𝑝,𝑖(𝑡 + ∆𝑡) = 𝑟𝑝,𝑖(𝑡) + ∫(∫ 𝐹𝑖𝑑𝑡)𝑑𝑡 +

∑
𝜕𝐷𝑖𝑗(𝑡)

𝜕𝑟𝑝.𝑗
∆𝑡𝑗 + ∑

𝐷𝑖𝑗𝐹𝑗(𝑡)

𝐾𝐵𝑇
∆𝑡𝑗 + 𝑅𝑖(∆𝑡)  

(21) 

 

where 𝑟𝑝,𝑖 represents the position of ith particle with respect to 

time 𝑡. 𝐹𝑖 is the force on ith particle as described from (20). 

𝐷𝑖𝑗  is the diffusion tensor and has to be obtained based on a 

specific system. Finally, 𝑅𝑖(∆𝑡)embed the random nature of 

displacement with Gaussian variance 2𝐷𝑖𝑗∆𝑡.  

In addition to single-particle motion, motion of particle 

agglomerates is also ubiquitous in colloidal suspensions. 

Particle agglomerates form due to enhanced interparticle 

forces due to increased surface area to volume ratios on nano 

scale [6]. 

Herewith we end the discussion on colloidal suspensions 

by introducing the composite particle agglomerate and 

breakup rate model in colloidal suspensions. Under 

association with the composite agglomerate model and 

solving for time evolution as in (21), we can extract the most 

complete information on the colloidal transport [6] problem. 
 

𝜕𝑛𝑘(𝑡)

𝜕𝑡
=

1

2
∑ 𝐾𝑖𝑗

𝐴𝑛𝑖(𝑡)𝑛𝑗(𝑡)𝑖+𝑗=𝑘 −

𝑛𝑘(𝑡) ∑ 𝐾𝑖𝑘
𝐴𝑛𝑖(𝑡)

∞
𝑖=1 +∑

𝑘𝑚
𝐵 𝑛𝑚(𝑡)

𝑚

∞
𝑚=𝑘+1 −

𝑘−1

𝑘
. 𝐾𝑘

𝐵𝑛𝑘(𝑡)  

(22) 

 

where 𝑛𝑘(𝑡) is the equilibrium aggregate number density at 

specific time 𝑡. 𝐾𝐴 and 𝐾𝐵 are aggregate agglomeration and 

breakage parameters respectively.  
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IV. COMPUTATIONAL METHODS  

A. Full-scale Volume of Fluid Model for Capillary 

Transport  

Full-scale VOF model can be presented as the most 

complete solution method for capillary flows. Parallel to the 

continuum CFD VOF approach we can provide the governing 

equations of VOF as follows [6], [38]. 

  
𝜕

𝜕𝑡
(𝛼𝑗𝜌𝑗) + ∇. (𝛼𝑗𝜌𝑗𝑣𝑗) = 0 

(23) 

 

where 𝛼𝑗 is the volume fraction of phase j and 𝜌𝑗 and 𝑣𝑗 are 

density and velocity of phase j respectively. The bulk fluid in 

the capillary is considered the primary phase and any species 

are considered secondary phases [6].  

The conservation of the volume fraction can be written as 

[6]: 

 

∑𝛼𝑖 = 1

𝑗

 (24) 

 

The general Navier-Stokes (NS) equation can be presented 

as [21]: 

 
𝜕

𝜕𝑡
(𝜌𝑣) + ∇. (𝜌𝑣𝑣) = −∇𝑝 + ∇. 𝜏 + 𝐹 

(25) 

 

Together with VOF conservation equations, NS equations 

can be solved for capillary flow with my modeling source 

term 𝐹 in (5) to account for surface tension effects as [6]: 

 

𝐹 = 𝜎𝑖𝑗
𝜌𝑘𝑖∇𝛼𝑗

(𝜌𝑗 + 𝜌𝑖)/2
 

(26) 

 

Due to its straightforward VOF capillary fluid modeling 

approach is a versatile and time-saving tool to simulate mass 

transport in microchannels.  

B. Molecular Dynamics  

Molecular dynamics (MD) as a computational approach 

has been highly aided research community in simulating 

micro/nanoscale transport. Even with non-continuum 

approaches to developing solutions, certain assumptions have 

to be made by reducing the accuracy of the solution to some 

factor. However, MD allows simulating individual atoms or 

molecules in a transport system on a more sophisticated basis. 

In MD, a large number of atoms are simulated with multiple 

degrees of freedom which requires large computational 

power. Due to this bottleneck, MD simulations are limited to 

simulating transport in small length scales where scalable 

number of atoms can be included. This restricts MD to micro 

and nano length scales producing challenges to expand it to 

larger length scales [6].  

As the main starting point, MD simulates the evolution of 

a system of particles confined in space. Evolution of 

velocities and positions are tracked for individual particles 

using Newton’s second law of motion. For MD, Newton’s 

second law can be given as [6], [37]: 

 

𝑚𝑗

𝜕𝑣𝑗

𝜕𝑡
=∑∇𝑉(𝑟𝑗𝑖)

𝑖≠𝑗

 
(27) 

and 

 
𝜕𝑟𝑗

𝜕𝑡
= 𝑣𝑗(𝑡) 

(28) 

 

where 𝑉(𝑟𝑗𝑖) is the interaction potential between atoms and 

molecules. The most common method to model the 

interaction potential is the Lennard-Jones potential given by 

[6],  

 

𝑉(𝑟𝑗𝑖) = 4𝜖{(
𝜎

𝑟𝑗𝑖
)12 − (

𝜎

𝑟𝑗𝑖
)6} (29) 

 

where 𝜎 is the Lennard-Jones diameter and 𝜖 is the energy 

parameter.  

C. Boltzmann Transport and Lattice Boltzmann Method 

Molecular dynamics approach as a simulation method is 

highly convenient when simulating very narrow flow 

domains (~nm scale geometries) [6]. To simulate a complete 

microfluidics system under multiple lengths scales molecular 

dynamics becomes computationally intensive and somewhat 

becomes infeasible. Lattice Boltzmann method (LBM) can be 

given as a solution to such bottlenecks in MD by facilitating 

effective coupling between micro and macro scales. 

Therefore, LBM can be considered a mesoscale approach 

[38].  

In MD, microstate of each induvial atom or molecule is 

considered while simulating a large number of 

atoms/molecules. In LBM, ensembles of atoms which has the 

same microstates are considered, and their evolution is 

modeled. Ensembles of microstates are defined using 

distribution functions specific to the system conditions 

(Temperature, macroscopic velocity etc.) [38]. And by 

studying the evolution of the distribution function from its 

equilibrium distribution function, microscopic properties 

and, as well as governing equations of fluid flow and mass 

transfer can be recovered [38]. By this approach, the number 

of variables to be solved is reduced but still preserving the 

details of microscale behavior. 

The time-dependent behavior of the distribution function 

(𝑓) is described by Boltzmann transport equation (BTE): 

  
𝜕𝑓

𝜕𝑡
+ 𝑐𝑖 . ∇𝑓 = 𝛺(𝑓) 

(27) 

 

where 𝑓 is the temporal distribution function, 𝑐𝑖 is the 

microscopic velocity and 𝛺(𝑓) is the collision term [6].  

The foundation to simulate any system using BTE is to 

accurately define the collision term. However, it has been a 

great challenge to define exact collision terms due to 

complexity of the system. However, as a crude definition for 

𝛺(𝑓), a relaxation time approximation is generally used [38].  

Analytical solutions to BTE are available for many solid-

state transport problems [39]. However, analytical solutions 

to BTE for fluid flow and mass transport become highly 

challenging. Therefore, as a remedy, LBM as a numerical 

approach can be introduced to obtain solutions to BTE. LBM 

stems initially from the Bhatnagar-Gross-Crook (BGK) 
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approximation to collision operator where a single relaxation 

time (𝜏) is assumed as [38]: 

 

𝑓𝑖(𝑐 + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖(𝑥, 𝑡)

=
𝑓𝑖(𝑥, 𝑡) − 𝑓𝑖

𝑒𝑞
(𝑥, 𝑡)

𝜏
 

(28) 

 

where 𝑐𝑖 is the microscopic velocity. After rigorous 

mathematical manipulations (discretizing Maxwell-

Boltzmann distribution function), 𝑓𝑖
𝑒𝑞
(𝑥, 𝑡) can be written as,  

 

𝑓𝑖
𝑒𝑞
(𝑥, 𝑡) =  𝜌𝑤𝑖[1 +

𝑢. 𝑐𝑖
𝑐𝑠
2
+
1

2
(
𝑢. 𝑐𝑖
𝑐𝑠
2
)2 +

𝑢. 𝑢

2𝑐𝑠
2
] 

(29) 

 

where 𝜌 and 𝑢 are macroscopic density and velocity and can 

be simply obtained from: 

 

𝜌 =∑𝑓𝑖(𝑥, 𝑡)

𝑖

 (30) 

and 

𝜌𝑢 =∑𝑓𝑖(𝑥, 𝑡)𝑐𝑖
𝑖

 (31) 

 

where 𝑐𝑠 is referred to as lattice sound speed and 𝑤𝑖  is a 

weight factor assigned based on discretization approach.  

For a two dimensional flow domain, the most common 

approach of D2Q9 [38], 𝑐𝑠 can be obtained from the 

characteristic microscopic length and time scales as: 

 

𝑐𝑠
2 =

∆𝑥2

3∆𝑡2
 

(32) 

 

Equation (32) can be presented as one of the noteworthy 

point where the mesoscopic bridge has been made. The 

continuum level NS equations can be obtained from this point 

onwards using a mathematical manipulation referred to as 

Chapmen-Enskog expansion [38].  

So far, we have introduced the basics of resolving the flow 

field using LBM. To adhere to the scope of this paper, we will 

present the mass transfer modeling capabilities of LBM. After 

resolving the microscopic flow field, governing equation for 

the convection diffusion process (equation (4)), can be 

recovered using LBM approach [38] as: 

 

𝑗𝑖(𝑥 + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑗𝑖(𝑥, 𝑡) =

−
𝑗𝑖(𝑥,𝑡)−𝑗𝑖

𝑒𝑞
(𝑥,𝑡)

𝜏𝑐
+ ∆𝑡𝑆𝑖 +

∆𝑡2

2
𝐷𝑖𝑆𝑖   

(33) 

 

where 𝑗𝑖 is the new distribution function attributed for mass 

transfer. And 𝐷𝑖  is the new diffusion coefficient due to impact 

from the microscale and it is related to relaxation time 𝜏𝑐 by: 

 

𝐷𝑖 =
2𝜏𝑐 − 1

2
∆𝑡𝑐𝑠

2 
(34) 

 

Similarly, the source term, 𝑆𝑖 can be expressed according 

to LBM method as: 

𝑆𝑖 = (1 +
2𝜏𝑐 − 𝑐𝑖 . 𝑢

2𝜏𝑐 − 𝜃𝑐𝑠
2
)𝑤𝑖𝑆 

(35) 

  

where we can express the local concentration using: 

𝑐 =∑𝑗𝑖
𝑖

 (36) 

 

And new equilibrium distribution function can be obtained 

from: 

 

𝑗𝑖
𝑒𝑞
= 𝑤𝑖𝑐 (37) 

 

Similar to before, Chapmen-Enskog analysis can be used 

to recover the macroscopic governing equation of mass 

transport [39].  

 

V. EXAMPLES IN PRACTICAL IMPLEMENTATION  

Herewith we present a few works that have been performed 

on simulating mass transfer in micro and nanodevices. Kumar 

et al. [39] modeled mass transfer in Magentofluidic micro 

mixer using COMSOL software. Their simulations are based 

on solving continuum scale NS equations using shallow 

channel approximation. They have validated the numerical 

model with experimental data for microfluidic mass transfer 

only using a classical approach. Gajasinghe et al. [2] 

performed continuum scale multiphysics simulations to 

obtain impedance flux behavior when an alien cell is 

introduced to a microchannel filled with a regular blood 

culture using COMSOL software. The modeling results 

helped and motivated them to implement practical MEMS 

biosensors for cancer cell detection. Farsani et al. [5] modeled 

mass transfer in stirred microbial reactors using continuum 

approach. They have shown great success in simulating 

reaction phenomena by modeling source and sink term in 

continuum level species conservation equations. As a 

breakthrough study, Hernando et al. [40] modeled human 

living cell transport in micro confinements using lattice gas 

automata (LGA) methods. The approach is mostly parallel to 

LBM simulations since LBM stems from LGA concepts. 

Chevalier et al. [32] presented semi-analytical modeling of 

mass transfer in microfluidic electrochemical chips. They are 

approached by, starting from NS equations, solutions to flow 

fields accounting microfluidic effect are obtained initially. 

Secondly, they implemented Lèvêque approximation to 

model reactant diffusion from electrodes to the center of the 

microfluidic channel. Chevalier et al.’s [32] work is a sound 

example of utilizing both analytical as well as numerical 

methods to simulate mass transfer in microchannels. 

 

VI. CONCLUSION AND FUTURE IMPLICATIONS  

In this review, we introduced the multiscale modeling 

approaches in microfluidic mass transport. Transport 

behavior at micro/nano length scales can be highly deviant 

from classical definition due to rarefaction. Effects that 

showed negligible impact on macro scales showed 

dominance in many microfluidic applications (surface and 

charge effects). Analytical solutions are possible for many 

general transport cases. However, numerical approaches 

provide great flexibility in studying complex transport 

problems. Molecular dynamics has shown great potential in 

resolving the transport up to molecular scale but limiting the 

size of the simulation domain due to large associated 
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computational costs. Lattice Boltzmann method bridges the 

gap between macroscopic and microscopic scales and allows 

the researcher to simulate complex domains within a 

reasonable computational cost. 

 

 
Fig. 2. Time and length scales of solution methods starting from 

macroscopic Sizes [7]. 
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