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Modeling Approaches for Fluidic Mass Transport in
Next Generation Micro and Nano Biomedical Sensors
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ABSTRACT

This review discusses on current methodologies and trends in
modeling fluidic mass transport phenomena in micro and nano scale
biomedical devices. We have presented the governing equations for
species transport in micro and nano scales and provided analytical
as well as computational approaches that can aid in obtaining
solutions for complex flow problems. We have also reviewed novel
methodologies that modern research community utilized for
simulating species transport in micro and nano biomedical sensing
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I. INTRODUCTION

Micro and nanoscale devices have contributed
tremendously to the fields of engineering, biomedical
sciences,  applied/natural ~ sciences,  health  care,
instrumentation and many more [1]. The significance of
microelectromechanical systems (MEMS) origins due to the
change in properties of atomic and molecular systems that to
the classical understanding at such small length scales, and
have contributed tremendously to modern research
community and industry in many positive aspects [2]-[5].
The change in properties has resulted in enhanced resolution
power and sensitivity of a microdevice to a device working at
macro-scales [6].

While moving from macro to micro/nano scales,
characteristic dimensions of a general system become
comparable to the mean free paths of atoms and molecules,
ultimately deviating from the description of the system from
a classical perspective [6]. The behavior of systems at these
scales demonstrated many enhanced functional properties
[6], [7] such as thermal conductivity, optical properties,
electrical conductivity and many more [7]. Such enhanced
behavior has been used in many industrial, health care and
technological applications to facilitate, enhanced heat transfer
[8], [9], cancer cell detection [1], [2], advanced
characterization [10], non-Newtonian fluid flow [11] and
functional materials development [12], [13], etc.

Micro and nanodevices can be introduced as a marvel in
engineering that utilizes small length scale behavior to fulfil
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many needs of the society [3]. MEMS devices can be entirely
based on solid state, solid-liquid state as well as solid-gas
conditions [2], [14], [15]. Depending on the application, in
solid-liquid and solid-gas MEMS devices, fluid flow, heat
transfer and mass transfer can take a significant role in the
required process [1], [1], [3]. Therefore, to develop, model
and prototype such devices, a broad understanding of fluid
flow and mass transfer phenomena is needed. Through this
work, we have given an attempt to present modeling
processes of mass transfer phenomena in micro/nanodevices
from analytical and computational approaches.

To extract few past work done based on mass transfer in
micro devices, Gajasinghe et al. [2], [4] performed research
on microfluidic bio sensors on detection of cancer cells in
human blood cultures. They made a microchannel to achieve
micro confinement of human cancer cell cultures and used
electrical impedance spectroscopy to label the cells based on
the change of impedance of the microchannel. Psaltis et al.
[16] discussed the optical advantages of microfluidics in their
review. As they have presented, microfluidics facilitated a
branch referred to as optofluidics that can contribute to
microscopic optical characterization. Terrey et al. [17]
introduced microfluidic flow control by introducing control
of colloidal particles in the fluid. Smart manipulation of
colloidal particles benefitted smart microfluidic valves and
micrometer-scale fluid pumps. Yildirim et al. [14] developed
surface acoustic wave viscosity and density sensor integrating
with microfluidics. Similar to the work done by Gajasinghe
et al. [2], [4], they used electrical impedance spectroscopy to
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perform desired measurements. Finally, Paprotny et al. [10]
developed a microfluidic sensor to monitor the airborne
particulate matter. They have used the principle of acoustic
resonation to evaluate particulate matter concentration based
on a change in resonant frequency. All such works
demonstrate the advantages of microfluidics to industry and
society due to the expanded reach for collecting information
using such small length scales.

Electrode Connections
to Spectrometer

Substrate

Cancer Cells in the
Blood Sample

Electrodes on the
Channel Wall

Microchannel

Fig. 1. Immobilization free microfluidic biosensor developed by Gajasinghe
etal. [2].

For a researcher who is motivated in developing smart
microfluidic device, modeling is a crucial need before
moving to prototyping. In general, we can characterize main
areas of interest in microfluidics as mechanical, fluid flow,
thermal, electrical, and mass transport. Mass transfer in
microfluidics has tremendously contributed to many
biological applications [2] and also mechanical, thermal, heat
transfer aspects as discussed in the previous paragraph. To
adhere to the scope of this review, herewith we introduced an
overview of modeling methods in microfluidic mass transport
starting from governing equations for microflows.

We have presented analytical and numerical approaches
that have gained popularity in microfluidic research
community and are accepted as standards in understanding
micro/nano flows. All solutions as similar to the classical
approaches, based on solving fundamental governing
equations pertaining to a specific transport phenomenon. We
will notice that after manipulating through the small length
and time scales, will still recover classical definitions of
transport phenomena. Therefore, to develop a bridge between
continuum (classical) and non-continuum (micro/nano)
description, we initially present classical governing equations
and solutions to mass transport problems. And the relation
between classical and non-continuum laws is subsequently
discussed in this article.

Il. CONTINUUM MODELING APPROACHES FOR MASS
TRANSPORT
A. Analytical Approaches

In continuum-based solutions for mass transport, we pre-
assume that molecular mean free paths of the species are
many orders of magnitude smaller compared to the flow
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domain. In addition to this assumption, we also consider
carrier fluid medium, or the bulk medium has a mean free
path that is much smaller than the species [18]. Due to this
assumption, we can define the transport properties of the
system in a bulk approach which can be considered
independent of the effect of the spatial domain.

B. Brownian Motion

Brownian motion can be considered the simplest mass
transport process. The species in a bulk medium diffuse in
space due to intermolecular collisions (atomic/molecular
vibrations) and can be mainly attributed to concentration
gradient-driven transport. We can mainly describe continuum
Brownian motion from Fick’s first diffusion law by defining
bulk diffusion coefficient (D) and local concentration (c) of
the species [19], [20]. Therefore, mass flux of the species (J),
by Fick’s first law for fully concentration gradient driven
transport can be given as [19]:

J=-DV.c 1)

. a a a
where V can be subsequently written as, 5"'54—5 to

represent three dimensions in the cartesian coordinate system.
The definition for diffusion coefficient can be different based
on the criteria of the system, however, for a most general case
for the diffusion of spherical particles with an average
diameter d,,, we can write an expression for d,, using Stokes-
Einstein relationship as:

kg.T
DB 2
6mnd,

where kj is the Boltzmann constant (kz = 1.38 x 10723]/
K) and T is the absolute temperature. And 7 is the bulk fluid
viscosity. In most cases, Fick’s first law becomes a qualitative
comparison tool for mass transport. However, Fick’s second
law provides temporal evolution characteristics of transport
and many analytical solutions become possible to resolve the
process. Therefore, Fick’s second law can be given as:

dc 3
Frie D V%.¢c + w,

. . . aZ az 62
where t is the time in real space and V>= — + — + —and
0x%2 = 9y2  09z2

wy 1S mass source or sink term in the system. Analytical
approaches can be presented for (3) for many flow
arrangements based on the feasibility of developing an
analytical solution [21].

C. Advection with Fick’s Diffusion

So far, Brownian motion considered diffusion of species in
a stationary medium. For transport in a moving medium,
Fick’s second law can be modified by accounting advection
effects. Therefore, Fick’s second law with advection effects
can be given as [18]:

dc 4
a=uV.c +DVic+S “)

Vol 1| Issue 3 | May 2022



European Journal of Biomedical Research
www.ej-biomed.org

where u is the velocity profile of the carrier medium and can
be written for three dimensions, u = i.u, +j.u, + k.u,,
with i, j and k are unit vectors in x,y and z coordinates. And
S is the source or sink term.

The initial step for seeking a solution to any advection-
diffusion problem is to resolve the velocity profile in the
transport domain. Herewith we assume that species
concentration is dilute enough therefore, it will not influence
bulk fluid flow. The most general approach is to obtain
velocity distribution by solving momentum equations to
obtain velocity distribution and subsequently solving
advection-diffusion equation in case of a steady flow
problem. For a transient problem, a coupled analytical
solution is needed to study the process [22].

D. Darcy’s Model

Significance in Fick’s diffusion is that mass transport is
only controlled by either advection or concentration gradient.
However, mass transport influenced by a pressure gradient is
not addressed. In Darcy’s model, mass transport velocity is
successfully described using a pressure gradient and gained
wide popularity in applying to porous media flow [20].

dp v

pv? (5)
dx Pm,

Pm,

where, dp/dx is the pressure gradient and Pm,, and Pm; are
viscous and inertial permeabilities of the species respectively.
These values can be found empirically for porous media.
Finally, it is important to note that Darcy’s model considers
the diffusion medium as homogeneous, and velocity (v)
provides the diffusion velocity of the species itself.

E. Numerical Approaches

Analytical solutions for transport problems are mostly
possible when the geometry is not complex and can be
successfully defined with a minimum number of variables
that can facilitate an analytical solution. However, when the
geometry is complex enough and the problem expands to
multi-dimensions with complex boundary conditions,
analytical solutions become infeasible. Therefore, as an
alternative, computational modeling is necessary with valid
approximations within an acceptable tolerance [23].
Computational fluid dynamics (CFD) as a modeling tool
highly facilitated resolving transport problems in these
aspects [24].

F. Species Transport

Objective of CFD approaches in species transport is to
solve governing equations from a numerical approach. The
most common methodology is to utilize finite volume (FVM)
or finite difference method (FDM) depending on the
complexity of the geometry. We can discretize the advection-
diffusion equation ((4) using one dimensional explicit FDM
only for x direction as [18]:

c{y‘].“- l"] _ Czn+1,j_cin—1,j cfj—2c5j+c?_1j (6)
i vy A v Rl

where c{}]-“ and ¢;); are concentration of the species at n+1
and n'" time step. At is the time step size for each iteration and
Ax is the grid spacing in x-dimension. For any source or sink
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of mass in the transport domain @ can be added as an
additional variable. Similar to analytical solutions, equation
(6) has to be solved coupled with momentum equations to
obtain flow field information [18].

G. Multiphase Modeling Methods

Mass transport can also be modeled using pure
computational techniques such as multiphase models. Most
common multiphase models are discrete phase (DPM) and
volume of fluid (VOF) modeling. In DPM, mass transport is
modeled as individual particles that are not influencing the
flow paths of bulk flow. Therefore, DPM is acceptable to
dilute flows [25]. The general transport equation of DPM can
be given as [26]:
)

aC; 5

= HuV-C =DV2Co— u. Vs = up VG
where C; is the discrete particle concentration, u is the local
bulk fluid velocity, u; is the local lift velocity based local and
average shear stresses. And u,. is local drift velocity which is
impacted by fluid drag and buoyant forces.

Secondly, VOF model defines two phases in discrete way
using an order parameter. Order parameter is usually a
fraction between 0 and 1 (Referred as void fraction) which
identifies the volume occupied by each phase in a discrete
simulation volume [27]. Therefore, VOF solves two coupled
conservation equations simultaneously for species transport
and order parameter [28], [29]. The conservation equation to
void fraction can be given as [29]:

p(@) (3 +u.Vu) = =Vp + p(p).g + ®)
V. [u(p)(Vw)]

where, ¢ is the void fraction and p(¢) is the density
associated with the order parameter. And u(¢) is the dynamic
viscosity of the respective phase. Continuum Porous Media
Modeling

Porous media becomes an important application when
considering micro-nano scale transport. Application of
porous media has benefited in many aspects in heat and mass
transfer [18], [30]. Therefore, continuum scale porous media
modeling is highly benefited modern research community.
By considering a continuum overall diffusion coefficient
species transport equations can be solved for porous media
using methods introduced before. However, solving the
velocity profile can be highly challenging in such domains.
As a solution for this issue, a momentum sink term can be
introduced to Navier-Stokes (momentum) equations to
represent a virtual type of porous media to obtain the velocity
profile as below [20].

6(;tv)+v.(pv.v) =—V.p+V.t - F ©

where F is the momentum sink term and  is the viscous shear
stress tensor. F can be modeled as [31]:

H 1 (10)
F=——. —. .
po v+2 Cypv.v
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where, a is the bulk permeability of the porous media and C,
is a model constant.

In conclusion, most continuum approaches are
satisfactorily valid for limited cases in microfluidic devices
where associated transport is sufficiently dense therefore,
rarefication effects can be neglected. However, using
continuum methods is completely not valid for nanofluidics.

I11.  NON-CONTINUUM MODELING APPROACHES

So far, we have considered continuum methods for
simulating mass transport with assumptions based on small
molecular mean free paths compared to dimensions of the
flow domain. Because of this assumption, we were able to
define the holistic flow and diffusion properties to arrive at a
transport solution.

However, when characteristic dimensions of the domain at
the order of the magnitude of the molecular mean free path,
scattering of molecules with domain boundaries becomes
significantly important similar (or greater) to intermolecular
collisions. In classical laws, it is considered that scattering
with domain boundaries is insignificant compared to
intermolecular scattering. Due to this phenomenon, we
observe a deviation of diffusion properties that to continuum
assumptions in such length scales [6].

In addition to boundary scattering, due to rarefication,
surface forces from the boundaries become a dominant
driving force in fluid flow and mass transport. Secondly,
because of the dominance of surface effects, no slip boundary
condition arises at the surface invalidating zero flow
velocities at the fluid-solid interface. Thirdly, non-Newtonian
effects take place in fluid flow showing non-linear behavior
in fluid shear stress at such length scales [6]. The objective of
this section is to provide solution approaches for mass
transport under rarefication effects and varying diffusion
properties at micro-nano length scales.

A. Analytical Methods

Similar to continuum methods, analytical solutions are
possible for specific flow cases in micro-nano scales where
simple geometries are involved. Herewith we present the
most common analytical solutions for microscale mass
transport processes.

B. Capillary Transport

Capillary transport refers to the transport of fluids in
channels without and external driving force. The transport
occurs due to surface forces on liquid molecules and this
effect becomes dominant in microdevices with characteristics
length scales of the order of 107¢ m [32]. Though we have
stated that capillary effects are due to surface forces,
however, capillary effects can be boosted by controlling the
surface forces using methods from thermal, chemical, electric
fields, optics and hydrodynamic itself [6]. These effects can
be used to further scale down the microdevices up to
nanoscale by helping to develop more sophisticated devices
[6].

The initial solution for capillary flow in microchannels
starts with reduced order model to obtain velocity distribution
in microchannels [6]. In the reduced-order model, capillary
flow is attributed to a lumped system analysis. Therefore, the
flow fields inside the microchannel are not explicitly solved
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rather than providing average values for velocity based on
capillary dimensions.

Reduced order model stems from the momentum equations
as discussed before. The most final form of reduced-order
model with an added mass for a rectangular microchannel
with width w and length [ and height h,, can be given as [6]:

cosf 1

o Twlt D

a
- {Mg + pholw)u,} = 201 5hw|
Fm - FD

where M, is the added mass, 6 is the dynamic contact angle,
F;, is the drag force and F,,, is any force that acts on the system
apart from the drag force. The added mass is a virtual mass
that has been introduced to remove inconsistency of the

. . 2wh, .
solution. Therefore, with 7, = 2(v:/+ff 1 we can write an
0

expression for M, as [6]:

_ prurfw
==

", (12)

To arrive at the complete solution of (11), definition of
drag force F, is necessary. F,, can be modeled for different
flow systems as presented elsewhere [6].

We can solve for mass transport by reducing order velocity
using (4). Using (4) does not account impact of rarefication
on mass transport and results can be somewhat non-assuring.
Therefore, to overcome such inaccuracies, the most valid
approach is to utilize VOF full scale numerical model to
resolve mass transport as presented in non-continuum
computational methods section.

C. Electrokinetic Transport

Electrokinetic transport occurs in small length scales due
to an applied electric field on the transport medium. Fluid
flow is initiated due to the phenomenon called electric double
layer formation (EDL) [6]. Capillary front can be stimulated
by the effects of EDL to produce fluid flow [6].

Herewith we present a most common mass transport model
under electrokinetic flow as presented by Chakraborty et al.
[6] on the transport of macromolecules in the order of size of
the flow domain in narrow confinements. Macromolecular
transport analysis has been highly contributed to the
separation of analytes in many microscale characterization
processes [32].

For an analyte introduced for a microchannel with a mean
velocity i, we can write the species conservation equation for
the concentration of the analyte (c) [6] as:

St (=M + -0 = (D) + (19
7Dy 5 4 3 (ep 5 + 3 (epc 3)
where u,, and v, are axial and transverse non-electrophoretic
velocities respectively. And D, and D,, axial and transverse
diffusivities respectively. The parameter pu., is called
electrophoretic mobility which is a parameter that takes into
factors that are beyond concentration gradients (free energy
potentials etc. [6]). And W is the external electrostatic
potential.
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For fully developed flow in rectangular microchannel with
appropriate boundary conditions, we can obtain axial and
transverse diffusivities as [6],

. 1 exp(— w(J’cp)) dA (14)
T (%)
S, exp(— W pr — P2y dA
fAC%ex a ww()’cp)) A (15)
yo fAC exp(— W(YCp)) dA

where D is the classical diffusion coefficient of the analyte
based on particle diameter R,,, and can be obtained using:

_ kT (16)
~ 6mnR,

and B, and B, are drag enhancement factors of analytes in
longitudinal and transverse directions and need to be
evaluated separately based on imposed transport conditions
[6].

In addition to the previous approach, as a more holistic
solution for analyte flow, have presented by Chakraborty et
al. [6] consider the transformation of advection-diffusion
species transport to an equivalent dispersion equation using
perturbation analysis, considering a dispersion coefficient
(D) as [6]:

o(C)
ot

_a(C)

2%(C
LS ()

0x?

(17)

D,D*

where (C) is the average concentration by perturbation
analysis and U is the band velocity with (u) as the average
velocity in the channel. From this work, the time evolution of
the concentration of analytes can be presented as [6]:

(L — (u)Ut)?
~ 4D,D't

(18)

n 1
(C) = °o . ex
2cowH _ [4ntD,D*t

where n, is the number of moles of analytes in the channel.
w and H are channel width and height respectively with c, as
the initial concentration of analytes introduced to the channel.
Electrokinetic transport has been highly contributed to many
biological microelectronic  systems (BioMEMS) in
evaluating invasion-free cancer cell detection, Immunology
and many technological aspects [34].

D. Colloidal Transport

Another form of important micro and nanoscale transport
process can be extracted as discrete particle transport or
colloidal transport which contributed tremendously to
BioMEMS applications [2]. Colloidal transport refers to the
transport of micro and nanoscale particles or agglomerates in
a bulk suspension. The recent motivations in such colloidal
suspensions are due to the enhanced properties of the
suspension than the base fluid [6]. The introduction of
nanoparticles to a base fluid has resulted in increased
functional properties such as thermal conductivity [7], [35].
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Therefore, such composite fluids have aided to increase heat
transfer efficiencies in many solid and liquid state heat
transfers [37].

The solutions to transport properties in composite
suspensions are highly challenging with analytical methods
due to a large number of particles and associated degrees of
freedom. Almost all colloidal transport models are solved
using numerical approaches. However, we introduce a few
colloidal masses transport models in this section, and solution
methods will be introduced in the upcoming section.

A nanoparticle motion in a suspension can be initially
described using Newton’s second law of motion [6],

(19)

where m is the particle mass, v, is the particle velocity and F
is the total force acting on the particle. The complete form of
this equation can be given considering all force effects on
nanoparticles based on Stokes drag, Basset History, virtual
mass, acceleration of undisturbed fluid and body forces as
respectively following the addition terms [6]:

dv
m.d—tp = 6murn, (vl -v,) + (20)
prt td(v;—vy) drt Dvl dv.
bury %7 dt ’ Vi-t 3( - p)+

4 3 Dy 4
PRUIL el e [ (pp - .01)9

where 7 is the relaxation time.
By knowing this information, we can study the evolution
of a particle using the relation [6]:

rpl(t +At) =1,,(t) + [ ([ Fidt)dt +

L(t) DyjF;(t)
Y a’ t+ Y; I’(B’ At + R;(At)

(21)

where 1, ; represents the position of i particle with respect to
time ¢t. F; is the force on i"" particle as described from (20).
D;; is the diffusion tensor and has to be obtained based on a
specific system. Finally, R;(At)embed the random nature of
displacement with Gaussian variance 2D;;At.

In addition to single-particle motion, motion of particle
agglomerates is also ubiquitous in colloidal suspensions.
Particle agglomerates form due to enhanced interparticle
forces due to increased surface area to volume ratios on nano
scale [6].

Herewith we end the discussion on colloidal suspensions
by introducing the composite particle agglomerate and
breakup rate model in colloidal suspensions. Under
association with the composite agglomerate model and
solving for time evolution as in (21), we can extract the most
complete information on the colloidal transport [6] problem.

MO S KO~ @)

oo km mt
nkmz LKA (D) + ey 2O
T.Kknk(t)

where n, (t) is the equilibrium aggregate number density at
specific time t. K4 and K? are aggregate agglomeration and
breakage parameters respectively.
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IV. COMPUTATIONAL METHODS

A. Full-scale Volume of Fluid Model for Capillary
Transport
Full-scale VOF model can be presented as the most
complete solution method for capillary flows. Parallel to the
continuum CFD VOF approach we can provide the governing
equations of VOF as follows [6], [38].

d 23

where a; is the volume fraction of phase j and p; and v; are
density and velocity of phase j respectively. The bulk fluid in
the capillary is considered the primary phase and any species
are considered secondary phases [6].

The conservation of the volume fraction can be written as

[6]:
Z a;=1

J

(24)

The general Navier-Stokes (NS) equation can be presented
as [21]:

d 2
a(pv) +V.(pyv) =-VGp+V.T+F (25)

Together with VOF conservation equations, NS equations
can be solved for capillary flow with my modeling source
term F in (5) to account for surface tension effects as [6]:

pkiVaj

F (26)
Y(p;+p)/2
Due to its straightforward VOF capillary fluid modeling
approach is a versatile and time-saving tool to simulate mass
transport in microchannels.

B. Molecular Dynamics

Molecular dynamics (MD) as a computational approach
has been highly aided research community in simulating
micro/nanoscale transport. Even with non-continuum
approaches to developing solutions, certain assumptions have
to be made by reducing the accuracy of the solution to some
factor. However, MD allows simulating individual atoms or
molecules in a transport system on a more sophisticated basis.
In MD, a large number of atoms are simulated with multiple
degrees of freedom which requires large computational
power. Due to this bottleneck, MD simulations are limited to
simulating transport in small length scales where scalable
number of atoms can be included. This restricts MD to micro
and nano length scales producing challenges to expand it to
larger length scales [6].

As the main starting point, MD simulates the evolution of
a system of particles confined in space. Evolution of
velocities and positions are tracked for individual particles
using Newton’s second law of motion. For MD, Newton’s
second law can be given as [6], [37]:
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v, @7)
m; a_tj = Z VWV (r;:)

i#j
and

ar; _ (28)
T v;(t)

where V (r;;) is the interaction potential between atoms and
molecules. The most common method to model the
interaction potential is the Lennard-Jones potential given by

(6],

o o

V() = 46" - () (29)
Tii Tji

where ¢ is the Lennard-Jones diameter and € is the energy

parameter.

C. Boltzmann Transport and Lattice Boltzmann Method

Molecular dynamics approach as a simulation method is
highly convenient when simulating very narrow flow
domains (~nm scale geometries) [6]. To simulate a complete
microfluidics system under multiple lengths scales molecular
dynamics becomes computationally intensive and somewhat
becomes infeasible. Lattice Boltzmann method (LBM) can be
given as a solution to such bottlenecks in MD by facilitating
effective coupling between micro and macro scales.
Therefore, LBM can be considered a mesoscale approach
[38].

In MD, microstate of each induvial atom or molecule is
considered while simulating a large number of
atoms/molecules. In LBM, ensembles of atoms which has the
same microstates are considered, and their evolution is
modeled. Ensembles of microstates are defined using
distribution functions specific to the system conditions
(Temperature, macroscopic velocity etc.) [38]. And by
studying the evolution of the distribution function from its
equilibrium distribution function, microscopic properties
and, as well as governing equations of fluid flow and mass
transfer can be recovered [38]. By this approach, the number
of variables to be solved is reduced but still preserving the
details of microscale behavior.

The time-dependent behavior of the distribution function
(f) is described by Boltzmann transport equation (BTE):

of ~ @7)
=t eV =00)

where f is the temporal distribution function, ¢; is the
microscopic velocity and Q(f) is the collision term [6].

The foundation to simulate any system using BTE is to
accurately define the collision term. However, it has been a
great challenge to define exact collision terms due to
complexity of the system. However, as a crude definition for
0(f), arelaxation time approximation is generally used [38].

Analytical solutions to BTE are available for many solid-
state transport problems [39]. However, analytical solutions
to BTE for fluid flow and mass transport become highly
challenging. Therefore, as a remedy, LBM as a numerical
approach can be introduced to obtain solutions to BTE. LBM
stems initially from the Bhatnagar-Gross-Crook (BGK)

Vol 1 | Issue 3| May 2022 [



European Journal of Biomedical Research
www.ej-biomed.org

approximation to collision operator where a single relaxation
time () is assumed as [38]:

fi(c + cAt, t + At) — f;(x, t)
At = £

T

(28)

where ¢; is the microscopic velocity. After rigorous
mathematical — manipulations  (discretizing ~ Maxwell-
Boltzmann distribution function), fieq (x, t) can be written as,

u. ¢ N %(u. o wu (29)

f;:eq(x’ t) = pwl[1 + ZCSZ

) + 5]

c? c?

where p and u are macroscopic density and velocity and can
be simply obtained from:

p=Zﬁ-<x,t>

pu = Z fix, )

(30)

and
(31)

where ¢, is referred to as lattice sound speed and w; is a
weight factor assigned based on discretization approach.

For a two dimensional flow domain, the most common
approach of D2Q9 [38], c; can be obtained from the
characteristic microscopic length and time scales as:

3 Ax?
T 3At2

, (32)
Cs

Equation (32) can be presented as one of the noteworthy
point where the mesoscopic bridge has been made. The
continuum level NS equations can be obtained from this point
onwards using a mathematical manipulation referred to as
Chapmen-Enskog expansion [38].

So far, we have introduced the basics of resolving the flow
field using LBM. To adhere to the scope of this paper, we will
present the mass transfer modeling capabilities of LBM. After
resolving the microscopic flow field, governing equation for
the convection diffusion process (equation (4)), can be
recovered using LBM approach [38] as:

ji(x + CiAt,t + At) —ji(x, t) =
i _qi 2
MR ED | ats; + 2D,

Tc

(33)

where j; is the new distribution function attributed for mass
transfer. And D; is the new diffusion coefficient due to impact
from the microscale and it is related to relaxation time 7. by:

2t —1

(34)
DL' = 2

Atc?

Similarly, the source term, S; can be expressed according
to LBM method as:
21, —¢.u g
21, — 0c? Wi

Si=@+ (39)

where we can express the local concentration using:
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(36)

C=Zji
i

And new equilibrium distribution function can be obtained
from:

.eq _
]l' = w;cC

@7

Similar to before, Chapmen-Enskog analysis can be used
to recover the macroscopic governing equation of mass
transport [39].

V. EXAMPLES IN PRACTICAL IMPLEMENTATION

Herewith we present a few works that have been performed
on simulating mass transfer in micro and nanodevices. Kumar
et al. [39] modeled mass transfer in Magentofluidic micro
mixer using COMSOL software. Their simulations are based
on solving continuum scale NS equations using shallow
channel approximation. They have validated the numerical
model with experimental data for microfluidic mass transfer
only using a classical approach. Gajasinghe et al. [2]
performed continuum scale multiphysics simulations to
obtain impedance flux behavior when an alien cell is
introduced to a microchannel filled with a regular blood
culture using COMSOL software. The modeling results
helped and motivated them to implement practical MEMS
biosensors for cancer cell detection. Farsani et al. [5] modeled
mass transfer in stirred microbial reactors using continuum
approach. They have shown great success in simulating
reaction phenomena by modeling source and sink term in
continuum level species conservation equations. As a
breakthrough study, Hernando et al. [40] modeled human
living cell transport in micro confinements using lattice gas
automata (LGA) methods. The approach is mostly parallel to
LBM simulations since LBM stems from LGA concepts.
Chevalier et al. [32] presented semi-analytical modeling of
mass transfer in microfluidic electrochemical chips. They are
approached by, starting from NS equations, solutions to flow
fields accounting microfluidic effect are obtained initially.
Secondly, they implemented Lévéque approximation to
model reactant diffusion from electrodes to the center of the
microfluidic channel. Chevalier et al.’s [32] work is a sound
example of utilizing both analytical as well as numerical
methods to simulate mass transfer in microchannels.

VI. CONCLUSION AND FUTURE IMPLICATIONS

In this review, we introduced the multiscale modeling
approaches in microfluidic mass transport. Transport
behavior at micro/nano length scales can be highly deviant
from classical definition due to rarefaction. Effects that
showed negligible impact on macro scales showed
dominance in many microfluidic applications (surface and
charge effects). Analytical solutions are possible for many
general transport cases. However, numerical approaches
provide great flexibility in studying complex transport
problems. Molecular dynamics has shown great potential in
resolving the transport up to molecular scale but limiting the
size of the simulation domain due to large associated
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computational costs. Lattice Boltzmann method bridges the
gap between macroscopic and microscopic scales and allows
the researcher to simulate complex domains within a
reasonable computational cost.
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Fig. 2. Time and length scales of solution methods starting from
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