##plugins.themes.bootstrap3.article.main##

Advances in molecular biology tools have made it possible to make progress in terms of therapeutics by acting specifically on the molecular mechanisms involved in the virulence of pathogens or in the development of the disease. In the case of cancer, new therapeutics have been developed thanks to these advances. This is called targeted therapy. Targeted therapy molecules specifically act as a molecule, or a molecular pathway involved in the development of the tumor. The use of targeted therapy drugs therefore requires molecular characterization of tumors. In developing countries, the reference tool is high-throughput sequencing, but due to the high cost, this strategy remains inaccessible for the majority of African populations. It is remains necessary to implement alternative molecular diagnostic tools in order to reduce the disparities currently observed in access to cancer care. The High-Resolution Melting analysis (HRM) method is based on real-time PCR and is described as a simple, rapid and specific method for the detection of somatic mutations predictive of anti-tumor therapeutic response. We demonstrated in this study that this method could be implemented in a lower middle-income country like Côte d’Ivoire, and we used it to detect KRAS mutations in colorectal cancer patients for the first time in Cote d’Ivoire.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Cancer in sub-Saharan Africa: building local capacity for data production, analysis, and interpretation, p.2, WHO; 2022.
     Google Scholar
  2. H. Sung et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2021; 7(3): 209-249. doi: 10.3322/caac.21660.
    DOI  |   Google Scholar
  3. I. Ewing, J. J. Hurley, E. Josephides, et A. Millar. The molecular genetics of colorectal cancer. Frontline Gastroenterol. 2014; 5(1): 26–30. doi: 10.1136/flgastro-2013-100329.
    DOI  |   Google Scholar
  4. J. Li, X. Ma, D. Chakravarti, S. Shalapour, et R. A. DePinho. Genetic and biological hallmarks of colorectal cancer, Genes Dev. juin 2021; 35(11‑12): 787–820. doi: 10.1101/gad.348226.120.
    DOI  |   Google Scholar
  5. P. Seshacharyulu, M. P. Ponnusamy, D. Haridas, M. Jain, AparK. Ganti, et S. K. Batra. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets. janv. 2012; 16(1): 15–31. doi: 10.1517/14728222.2011.648617.
    DOI  |   Google Scholar
  6. M. Román et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Molecular Cancer. 2018;17. doi: 10.1186/s12943-018-0789-x.
    DOI  |   Google Scholar
  7. D. Soulières et al. KRAS mutation testing in the treatment of metastatic colorectal cancer with anti-EGFR therapies. Curr Oncol. juill. 2010.; 17(1): S31–S40.
    DOI  |   Google Scholar
  8. H. Rajagopalan, A. Bardelli, C. Lengauer, K. W. Kinzler, B. Vogelstein, et V. E. Velculescu. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. août 2002; 418(6901): 934. doi: 10.1038/418934a.
    DOI  |   Google Scholar
  9. I. A. Prior, P. D. Lewis, et C. Mattos. A comprehensive survey of Ras mutations in cancer. Cancer Res. May 2012; 72(10): 2457–2467. doi: 10.1158/0008-5472.CAN-11-2612.
    DOI  |   Google Scholar
  10. J. H. J. M. van Krieken et al. KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for a European quality assurance program. Virchows Arch. nov. 2008; 453(5): 417–431. doi: 10.1007/s00428-008-0665-y.
    DOI  |   Google Scholar
  11. U. Malapelle et al. KRAS mutation detection by high-resolution melting analysis significantly predicts clinical benefit of cetuximab in metastatic colorectal cancer. Br J Cancer. août 2012; 107(4): 626–631. doi: 10.1038/bjc.2012.275.
    DOI  |   Google Scholar
  12. H. Do, M. Krypuy, P. L. Mitchell, S. B. Fox, et A. Dobrovic. High resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin fixed paraffin embedded biopsies. BMC Cancer. mai 2008; 8: 142. doi: 10.1186/1471-2407-8-142.
    DOI  |   Google Scholar
  13. L. B. Harrison et N. D. Hanson. High-resolution melting analysis for rapid detection of sequence type 131 Escherichia coli. Antimicrob Agents Chemother. May 2017; 61(6). doi: 10.1128/AAC.00265-17.
    DOI  |   Google Scholar


Most read articles by the same author(s)